

Still Masked, Still Right: A Data-Driven Case for Vigilance

This brief was prepared to support patients who continue to take precautions against SARS-CoV-2 and/or report symptoms that may be downplayed. The evidence summarized below reflects current peer-reviewed science on the effects of SARS-CoV-2 on the brain, immune system, cardiovascular system, and overall functioning—even after mild or asymptomatic infection.

1. SARS-CoV-2 is a vascular and neuroinvasive virus—not just a respiratory one.

- Neuroimaging data show measurable brain tissue loss, cognitive decline, and disrupted neural networks post-infection—even in *non-hospitalized* adults.¹
- Cognitive deficits resembling IQ loss, attentional dysfunction, and memory decline are well-documented in both adults and children.^{2,3}
- Viral particles have been found in the brain, vasculature, and bone marrow months after infection.^{4,5,6}

2. Damage occurs even after “mild” or asymptomatic infections.

- Studies confirm structural and functional brain changes after *mild* cases, particularly in areas responsible for memory, attention, and executive function.^{7,8}
- Many individuals show signs of organ dysfunction (e.g., cardiovascular, renal) without overt symptoms—just as in hypertension or cancer before clinical presentation.^{9,10}

3. SARS-CoV-2 impairs immune function—sometimes long-term.

- T-cell exhaustion, persistent inflammation, and immune dysregulation are well-documented months after infection.¹⁰⁻¹²
- Children also experience neutrophil dysfunction and inflammatory syndromes despite mild illness.¹³⁻¹⁵

4. Children are not spared their other organs.

- A major cohort study of nearly 300,000 infected children showed increased risk of myocarditis, arrhythmias, thromboembolism, and heart failure months after infection.¹⁶
- Kidney dysfunction and neuropsychiatric manifestations have been reported in pediatric populations.^{17,18}

5. Functional impairment is often invisible but real.

- Individuals may struggle with cognition, fatigue, sensory overload, or post-exertional malaise even if routine labs appear “normal” yet they may perform poorly at mental tasks or while operating heavy machinery, including driving^{19,20}.

6. Masking and other protections are rational—not pathological.

- A person choosing to wear a high-quality mask, even when not ‘fitted’ in a clinical setting is applying layered, evidence-based risk reduction.²¹
- Avoiding repeat infections is not fear—it is a science-informed strategy to protect brain, heart, immune, and societal health. These are just facts.

This summary reflects peer-reviewed research from top-tier journals and global experts. For references and further reading, see reverse side.

Fact Sheet Prepared by:

Sean P. Mullen, PhD

Associate Professor, Health and Kinesiology
Director, Exercise, Technology, and Cognition Lab
University of Illinois Urbana-Champaign

References

1. Wood GK, Sargent BF, Ahmad ZU, et al. Posthospitalization COVID-19 cognitive deficits at 1 year are global and associated with elevated brain injury markers and gray matter volume reduction. *Nat Med*. Published online 2024. [doi:10.1038/s41591-024-03309-8](https://doi.org/10.1038/s41591-024-03309-8).
2. Douaud G, Lee S, Alfaro-Almagro F, et al. SARS-CoV-2 is associated with changes in brain structure in UK Biobank. *Nature*. 2022;604(7907):697-707. [doi:10.1038/s41586-022-04569-5](https://doi.org/10.1038/s41586-022-04569-5)
3. Hampshire A, Azor A, Atchison C, et al. Cognition and memory after COVID-19 in a large community sample. *N Engl J Med*. 2024;390(9):806-818. [doi:10.1056/NEJMoa2311330](https://doi.org/10.1056/NEJMoa2311330).
4. Monje M, Iwasaki A. The neurobiology of long COVID. *Neuron*. 2022;110(22):3484-3496. [doi:10.1016/j.neuron.2022.10.006](https://doi.org/10.1016/j.neuron.2022.10.006).
5. Stein SR, Ramelli SC, Grazioli A, et al. SARS-CoV-2 infection and persistence in the human body and brain at autopsy. *Nature*. 2022;612(7941):758-763. [doi:10.1038/s41586-022-05542-y](https://doi.org/10.1038/s41586-022-05542-y).
6. Rong Z, Mai H, Ebert G, et al. Persistence of spike protein at the skull-meninges-brain axis may contribute to the neurological sequelae of COVID-19. *Cell Host Microbe*. Published online November 29, 2024. [doi:10.1016/j.chom.2024.11.007](https://doi.org/10.1016/j.chom.2024.11.007).
7. Samanci B, Ay U, Gezegen H, et al. Persistent neurocognitive deficits in long COVID: Evidence of structural changes and network abnormalities following mild infection. *Cortex*. 2025;187:98–110. [doi:10.1016/j.cortex.2025.04.004](https://doi.org/10.1016/j.cortex.2025.04.004)
8. Xu E, Xie Y, Al-Aly Z. Long-term neurologic outcomes of COVID-19. *Nat Med*. 2022;28(12):2406-2415. [doi:10.1038/s41591-022-02001-z](https://doi.org/10.1038/s41591-022-02001-z).
9. Ewing AG, Salomon S, Pretorius E, et al. Review of organ damage from COVID and Long COVID: a disease with a spectrum of pathology. *Med Rev*. 2024;5(1):66-75. [doi:10.1515/mr-2024-0030](https://doi.org/10.1515/mr-2024-0030)
10. Kubisiak A, Dabrowska A, Botwina P, et al. Remodeling of intracellular architecture during SARS-CoV-2 infection of human endothelium. *Sci Rep*. 2024;14:29784. [doi:10.1038/s41598-024-80351-z](https://doi.org/10.1038/s41598-024-80351-z).
11. Phetsouphanh C, Darley DR, Wilson DB, et al. Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection. *Nat Immunol*. 2022;23(2):210-216. [doi:10.1038/s41590-021-01113-x](https://doi.org/10.1038/s41590-021-01113-x).
12. Pedroso RB, Torres L, Ventura LA, et al. Rapid progression of CD8 and CD4 T cells to cellular exhaustion and senescence during SARS-CoV-2 infection. *J Leukoc Biol*. 2024;116(6):1385-1397. [doi:10.1093/jleuko/qiae180](https://doi.org/10.1093/jleuko/qiae180).
13. Chou J, Thomas PG, Randolph AG. Immunology of SARS-CoV-2 infection in children. *Nat Immunol*. 2022;23(2):177-185. [doi:10.1038/s41590-021-01123-9](https://doi.org/10.1038/s41590-021-01123-9).
14. Bodansky A, Mettelman RC, Sabatino JJ Jr, et al; Overcoming COVID-19 Network Investigators. Molecular mimicry in multisystem inflammatory syndrome in children. *Nature*. 2024;632(8025):622-629. [doi:10.1038/s41586-024-07722-4](https://doi.org/10.1038/s41586-024-07722-4).
15. Kovács F, Posvai T, Zsáry E, et al. Long COVID syndrome in children: neutrophilic granulocyte dysfunction and its correlation with disease severity. *Pediatr Res*. Published online November 27, 2024. [doi:10.1038/s41390-024-03731-1](https://doi.org/10.1038/s41390-024-03731-1).
16. Zhang B, Thacker D, Zhou T, et al. Cardiovascular post-acute sequelae of SARS-CoV-2 in children and adolescents: cohort study using electronic health records. *Nat Commun*. 2025;16:3445. [doi:10.1038/s41467-025-56284-0](https://doi.org/10.1038/s41467-025-56284-0)
17. Li L, Zhou T, Lu Y, et al. Kidney function following COVID-19 in children and adolescents. *JAMA Netw Open*. 2025;8(4):e254129. [doi:10.1001/jamanetworkopen.2025.4129](https://doi.org/10.1001/jamanetworkopen.2025.4129)
18. Ewing AG, Joffe D, Blitshteyn S, et al. Long COVID clinical evaluation, research, and impact on society: a global expert consensus. *Ann Clin Microbiol Antimicrob*. 2025;24(1):Article 793. [doi:10.1186/s12941-025-00793-9](https://doi.org/10.1186/s12941-025-00793-9)
19. Erdik B, Homrich D. Driving under the cognitive influence of COVID-19: exploring the impact of acute SARS-CoV-2 infection on road safety. *Neurology*. 2024;103(7_Suppl_1):S46-S47. [doi:10.1212/01.wnl.0001051276.37012.c2](https://doi.org/10.1212/01.wnl.0001051276.37012.c2)
20. Erdik B. Driving under viral impairment: Linking acute SARS-CoV-2 infections to elevated car crash risks. *PLOS Glob Public Health*. 2025;5(4):e0004420. [doi:10.1371/journal.pgph.0004420](https://doi.org/10.1371/journal.pgph.0004420)
21. Greenhalgh T, MacIntyre CR, Baker MG, et al. Masks and respirators for prevention of respiratory infections: a state of the science review. *Clin Microbiol Rev*. 2024;37(2):e00124-23. [doi:10.1128/cmr.00124-23](https://doi.org/10.1128/cmr.00124-23)

Further Reading & Public Resources

- [The Hidden Damage to the Immune System](#)
- [Why I Still Wear an N95 – A Doctor’s Perspective | Stuck in the Middle with Masking – Playing the Long Game](#)